2021年9月2日,國際著名醫(yī)學期刊Journal of Clinical Investigation(影響因子14.8)在線發(fā)表了武漢大學生命科學學院劉勇課題組題為“IRE1α regulates skeletal muscle regeneration through Myostatin mRNA decay”的合作研究成果。此項工作揭示了骨骼肌中內(nèi)質(zhì)網(wǎng)應激感應蛋白IRE1α通過調(diào)控肌肉生長抑制素(Myostatin)的mRNA 降解影響骨骼肌再生過程,在肌肉損傷修復與肌萎縮疾病的發(fā)生發(fā)展中發(fā)揮重要的作用。
在真核細胞中,當內(nèi)質(zhì)網(wǎng)難以承擔未折疊蛋白負荷或代謝發(fā)生異常時會導致內(nèi)質(zhì)網(wǎng)應激,激活三條經(jīng)典的未折疊蛋白響應(UPR,Unfolded Protein Response)通路,其中包括進化上高度保守的內(nèi)質(zhì)網(wǎng)應激感應蛋白IRE1通路。IRE1α是定位于內(nèi)質(zhì)網(wǎng)的跨膜蛋白,具有蛋白激酶與核酸內(nèi)切酶的雙重活性,激活的IRE1核酸內(nèi)切酶通過催化XBP1轉(zhuǎn)錄因子mRNA的非常規(guī)剪接產(chǎn)生具備轉(zhuǎn)錄活性的 XBP1 (XBP1s),從而驅(qū)動一個主要的UPR基因表達程序。同時,IRE1核酸內(nèi)切酶還能通過一個被稱為RIDD(regulated IRE1-dependent decay)的過程直接降解特定的mRNA底物,從而參與細胞生存與功能的調(diào)控。在哺乳動物中,IRE1α信號通路涉及調(diào)節(jié)廣泛的生物學過程,包括細胞命運決定、代謝穩(wěn)態(tài)和免疫反應。
為了解析IRE1α通路與骨骼肌功能調(diào)節(jié)之間的機制關(guān)聯(lián),通過心臟毒素(CTX)誘導的小鼠急性肌肉損傷模型研究發(fā)現(xiàn),IRE1α在損傷誘導的肌肉再生過程中高度激活,而在骨骼肌特異性敲除IRE1α的小鼠中,心臟毒素誘導的肌肉再生顯著受損。利用小鼠及肌細胞培養(yǎng)系統(tǒng)的研究顯示,IRE1α通過抑制肌肉生長和修復的關(guān)鍵負調(diào)節(jié)因子—肌肉生長抑制素Myostatin,從而發(fā)揮骨骼肌再生的調(diào)控作用。進一步的分子機制研究發(fā)現(xiàn),在肌肉細胞分化和生長過程中,IRE1α利用其核酸內(nèi)切酶的RIDD活性降解肌肉生長抑制素的mRNA。簡言之,在肌肉損傷誘導的再生過程中,肌肉細胞被激活的IRE1α核酸內(nèi)切酶通過調(diào)節(jié)肌肉生長抑制素,進而促進成肌細胞分化和肌管生長。此外,IRE1α這一通過RIDD活性的調(diào)節(jié)機制與肌萎縮疾病進展密切相關(guān)。在Duchenne肌肉萎縮癥(DMD)的疾病小鼠模型中,肌肉IRE1α的缺失導致肌肉生長抑制素信號增強,進而促進肌肉損傷癥狀的惡化,加劇了小鼠運動障礙的表型。
綜上所述,此項研究揭示了IRE1α在肌肉再生過程中的關(guān)鍵作用,并闡明了IRE1α-Myostatin信號軸在肌肉細胞分化和再生過程中的調(diào)控模式,為治療肌肉退行性疾病的藥物研發(fā)提供了新的潛在靶點和理論線索。
該項研究由武漢大學劉勇課題組和南京大學甘振繼課題組共同合作完成,并得到科技部重點研發(fā)計劃、國家自然科學基金委重大項目等基金的資助支持。武漢大學博士后何勝琪為該論文的第一作者。
IRE1α通過RIDD通路抑制肌肉生長抑制素促進骨骼肌的再生修復。
在線網(wǎng)址:https://www.jci.org/articles/view/143737/
Skeletal muscle can undergo a regenerative process from injury or disease to preserve muscle mass and function, which are critically influenced by cellular stress responses. Inositol-requiring enzyme 1 (IRE1) is an ancient endoplasmic reticulum (ER) stress sensor and mediates a key branch of the unfolded protein response (UPR). In mammals, IRE1α is implicated in the homeostatic control of stress responses during tissue injury and regeneration. However, it has yet to be explored whether IRE1α plays a role in sensing skeletal muscle stress and regulating its regeneration process. A joint research team led by Dr. Yong Liu from Wuhan University and Dr Zhenji Gan from Model Animal Research Center of Nanjing University, demonstrated a critical role for IRE1α, the ER-localized transmembrane UPR signal transducer, in skeletal muscle regeneration in response to injury and muscular dystrophy. In a Research Article entitled “IRE1α regulates skeletal muscle regeneration through Myostatin mRNA decay” at Journal of Clinical Investigation, they reported in mice that IRE1α was activated during injury-induced muscle regeneration, and muscle-specific IRE1α ablation resulted in impaired regeneration upon cardiotoxin-induced injury. Gain- and loss-of-function studies in myocytes demonstrated that IRE1α acts to sustain both differentiation in myoblasts and hypertrophy in myotubes through regulated IRE1-dependent decay (RIDD) of mRNA encoding Myostatin, a key negative regulator of muscle repair and growth. Furthermore, in the mouse model of Duchenne muscular dystrophy (DMD), they showed that loss of muscle IRE1α resulted in augmented Myostatin signaling and exacerbated the dystrophic phenotypes. Their findings revealed a pivotal role for the RIDD output of IRE1α in muscle regeneration, offering novel insight into potential therapeutic strategies for muscle loss diseases.
版權(quán)與免責聲明:本網(wǎng)頁的內(nèi)容由收集互聯(lián)網(wǎng)上公開發(fā)布的信息整理獲得。目的在于傳遞信息及分享,并不意味著贊同其觀點或證實其真實性,也不構(gòu)成其他建議。僅提供交流平臺,不為其版權(quán)負責。如涉及侵權(quán),請聯(lián)系我們及時修改或刪除。郵箱:sales@allpeptide.com