Visible-light-driven nitrogen-doped carbon quantum dots decorated g-C3N4/Bi2WO6 Z-scheme composite with enhanced photocatalytic activity and mechanism insight
Jia, JK (Jia, Jiankui)[ 1 ] ; Zhang, XR (Zhang, Xiaorui)[ 1 ] ; Jiang, CY (Jiang, Caiyun)[ 2 ] ; Huang, WX (Huang, Wenxin)[ 1 ] ; Wang, YP (Wang, Yuping)[ 1,3 ]*(王玉萍)
[ 1 ] Nanjing Normal Univ, Sch Chem & Mat Sci, Jiangsu Prov Key Lab Mat Cycling & Pollut Control, Nanjing 210046, Peoples R China
[ 2 ] Jiangsu Inst Commerce, Dept Engn & Technol, Nanjing 211168, Peoples R China
[ 3 ] Nanjing Univ Sci & Technol, Jiangsu Key Lab Chem Pollut Control & Resources R, Nanjing 210094, Peoples R China
JOURNAL OF ALLOYS AND COMPOUNDS,202009,835,155180
In this work, the g-C3N4/Bi2WO6 Z-scheme composites were synthesized by in-situ calcination and hydrothermal method and the novel g-C3N4/Bi2WO6/NCQs was constructed by introducing nitrogen-doped carbon quantum dots (NCQs) on the interface of g-C3N4/Bi2WO6 catalyst. UV-vis spectroscopy data showed that the improved visible light utilization efficiency of the catalyst is attributed to the composition of g-C3N4/Bi2WO6 Z-scheme heterojunction and the addition of NCQs. Photocurrent response analysis and fluorescence intensity measurements showed that the high separation efficiency of photogenerated electron-hole pairs in the g-C3N4/Bi2WO6/NCQs composite. In addition, the excellent structural stability of g-C3N4/Bi2WO6/NCQs can be proved by the analysis data of cycle experiments and XRD diffraction peaks of catalysts before and after experiments. Obviously, the above experimental data and analysis demonstrated the outstanding photocatalytic activity of g-C3N4/Bi2WO6/NCQs. Free radical capture experimental data analysis confirmed that superoxide ion radicals (center dot O-2(-)) and holes (h(+)) play a major role in the reaction process, and the possible photocatalytic mechanism of g-C3N4/Bi2WO6/NCQs was proposed to further understand its enhanced photocatalytic activity.
文章鏈接:
https://www.sciencedirect.com/science/article/pii/S0925838820315437?via%3Dihub
版權(quán)與免責(zé)聲明:本網(wǎng)頁的內(nèi)容由收集互聯(lián)網(wǎng)上公開發(fā)布的信息整理獲得。目的在于傳遞信息及分享,并不意味著贊同其觀點或證實其真實性,也不構(gòu)成其他建議。僅提供交流平臺,不為其版權(quán)負責(zé)。如涉及侵權(quán),請聯(lián)系我們及時修改或刪除。郵箱:sales@allpeptide.com