Graphene Oxide-Assisted and DNA-Modulated SERS of AuCu Alloy for the Fabrication of Apurinic/Apyrimidinic Endonuclease 1 Biosensor
Li, JY (Li, Junyao)[ 1 ] ; Heng, H (Heng, Hang)[ 2 ] ; Lv, JL (Lv, Jianlin)[ 1 ] ; Jiang, TT (Jiang, Tingting)[ 1 ] ; Wang, ZY (Wang, Zhaoyin)[ 1 ]*(王兆寅); Dai, ZH (Dai, Zhihui)[ 1,2 ]*(戴志暉)
[ 1 ] Nanjing Normal Univ, Coll Chem & Mat Sci, Jiangsu Key Lab Biofunct Mat, Nanjing 210023, Jiangsu, Peoples R China
[ 2 ] Nanjing Normal Univ, Ctr Anal & Testing, Nanjing 210023, Jiangsu, Peoples R China
SMALL,201911,15(48),特SI
Fabrication of high-performance surface-enhanced Raman scattering (SERS) biosensors relies on the coordination of SERS substrates and sensing strategies. Herein, a SERS active AuCu alloy with a starfish-like structure is prepared using a surfactant-free method. By covering the anisotropic AuCu alloy with graphene oxide (GO), enhanced SERS activity is obtained owing to graphene-enhanced Raman scattering and assembly of Raman reporters. Besides, stability of SERS is promoted based on the protection of GO to the AuCu alloy. Meanwhile, it is found that SERS activity of AuCu/GO can be regulated by DNA. The regulation is sequence and length dual-dependent, and short polyT reveals the strongest ability of enhancing the SERS activity. Relying on this phenomenon, a SERS biosensor is designed to quantify apurinic/apyrimidinic endonuclease 1 (APE1). Because of the APE1-induced cycling amplification, the biosensor is able to detect APE1 sensitively and selectively. In addition, APE1 in human serum is analyzed by the SERS biosensor and enzyme-linked immunosorbent assay (ELISA). The data from the SERS method are superior to that from ELISA, indicating great potential of this biosensor in clinical applications.
文章鏈接:
https://onlinelibrary.wiley.com/doi/full/10.1002/smll.201901506
版權(quán)與免責(zé)聲明:本網(wǎng)頁的內(nèi)容由收集互聯(lián)網(wǎng)上公開發(fā)布的信息整理獲得。目的在于傳遞信息及分享,并不意味著贊同其觀點(diǎn)或證實(shí)其真實(shí)性,也不構(gòu)成其他建議。僅提供交流平臺(tái),不為其版權(quán)負(fù)責(zé)。如涉及侵權(quán),請聯(lián)系我們及時(shí)修改或刪除。郵箱:sales@allpeptide.com