Rational Design of Crystalline Covalent Organic Frameworks for Efficient CO2 Photoreduction with H2O
Lu, M (Lu, Meng)[ 1 ] ; Liu, J (Liu, Jiang)[ 1 ] ; Li, Q (Li, Qiang)[ 2 ] ; Zhang, M (Zhang, Mi)[ 1 ] ; Liu, M (Liu, Ming)[ 1 ] ; Wang, JL (Wang, Jin-Lan)[ 2 ] ; Yuan, DQ (Yuan, Da-Qiang)[ 3 ] ; Lan, YQ (Lan, Ya-Qian)[ 1 ]*(蘭亞乾)
[ 1 ] Nanjing Normal Univ, Jiangsu Collaborat Innovat Ctr Biomed Funct Mat, Sch Chem & Mat Sci, 1 Wenyuan Rd, Nanjing 210023, Jiangsu, Peoples R China
[ 2 ] Southeast Univ, Sch Phys, Nanjing 211189, Jiangsu, Peoples R China
[ 3 ] Chinese Acad Sci, State Key Lab Struct Chem, Fujian Inst Res Struct Matter, Fuzhou 350002, Fujian, Peoples R China
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION,201908, DOI: 10.1002/anie.201906890
Solar energy-driven conversion of CO2 into fuels with H2O as a sacrificial agent is a challenging research field in photosynthesis. Herein, a series of crystalline porphyrin-tetrathiafulvalene covalent organic frameworks (COFs) are synthesized and used as photocatalysts for reducing CO2 with H2O, in the absence of additional photosensitizer, sacrificial agents, and noble metal co-catalysts. The effective photogenerated electrons transfer from tetrathiafulvalene to porphyrin by covalent bonding, resulting in the separated electrons and holes, respectively, for CO2 reduction and H2O oxidation. By adjusting the band structures of TTCOFs, TTCOF-Zn achieved the highest photocatalytic CO production of 12.33 mu mol with circa 100 % selectivity, along with H2O oxidation to O-2. Furthermore, DFT calculations combined with a crystal structure model confirmed the structure-function relationship. Our work provides a new sight for designing more efficient artificial crystalline photocatalysts.
文章鏈接:
https://onlinelibrary.wiley.com/doi/full/10.1002/anie.201906890
版權(quán)與免責(zé)聲明:本網(wǎng)頁的內(nèi)容由收集互聯(lián)網(wǎng)上公開發(fā)布的信息整理獲得。目的在于傳遞信息及分享,并不意味著贊同其觀點(diǎn)或證實(shí)其真實(shí)性,也不構(gòu)成其他建議。僅提供交流平臺,不為其版權(quán)負(fù)責(zé)。如涉及侵權(quán),請聯(lián)系我們及時修改或刪除。郵箱:sales@allpeptide.com