Rational design of a zwitterionic-phosphonic copolymer for the surface antifouling modification of multiple biomedical metals
Liu, HW (Liu, Hongwei)[ 1 ] ; Liu, L (Liu, Li)[ 1 ] ; Jiang, XF (Jiang, Xuefeng)[ 1 ] ; Fan, J (Fan, Jin)[ 2 ] ; Peng, W (Peng, Wan)[ 1 ] ; Liu, PM (Liu, Peiming)[ 1 ] ; Yang, T (Yang, Ting)[ 1 ] ; Chen, HL (Chen, Haolin)[ 1 ] ; Jiang, W (Jiang, Wei)[ 3 ] ; Yin, GY (Yin, Guoyong)[ 2 ] ; Liu, PS (Liu, Pingsheng)[ 1 ]*(劉平生); Shen, J (Shen, Jian)[ 1,4 ] *(沈?。?/p>
[ 1 ] Nanjing Normal Univ, Sch Chem & Mat Sci, Jiangsu Collaborat Innovat Ctr Biomed Funct Mat, Jiangsu Key Lab Biofunct Mat, Nanjing 210023, Jiangsu, Peoples R China
[ 2 ] Nanjing Med Univ, Affiliated Hosp 1, Dept Orthoped, Nanjing 210029, Jiangsu, Peoples R China
[ 3 ] Nanjing Univ, Sch Environm, Natl Engn Res Ctr Organ Pollut Control & Resource, Nanjing 210023, Jiangsu, Peoples R China
[ 4 ] Nanjing Univ, Sch Chem & Chem Engn, Nanjing 210093, Jiangsu, Peoples R China
JOURNAL OF MATERIALS CHEMISTRY B,201907,7(25), 4055-4065
The lack of blood compatibility and antifouling ability is still one of the challenges of bare metallic implants and devices for biomedical applications. Here, based on the strong binding affinity of the phosphonic group on metallic substrates and excellent antifouling ability of zwitterionic materials, we reported the rational design of zwitterionic-phosphonic copolymers for efficient antifouling surface modification of diverse biomedical metals. Firstly, nine copolymers with a wide range of mole ratios between the zwitterionic and phosphonic components (from 10 : 90 to 99 : 1) were precisely prepared via conventional radical copolymerization. The XPS result revealed that the copolymers, even if only 1% of the phosphonic component was present, were able to bind onto the titanium alloy substrates. Water contact angle measurement showed that the more zwitterionic component in the coating copolymer, the better the surface wettability of the titanium alloy substrates. Systematic antifouling evaluation (protein adsorption, platelet adhesion, bacterial adhesion, and cell adhesion tests) results consistently indicated that the copolymers bearing the zwitterionic components, ranging from 20 to 95%, can efficiently confer perfect antifouling ability to the titanium alloy substrates, establishing a robust relationship between the composition of the copolymer and the surface antifouling property conferred to the titanium alloy substrates. In addition, the ability of the zwitterionic-phosphonic copolymers to improve the antifouling ability of other biomedical metals (pure Ti and stainless steel) and devices (scalpels) was clearly demonstrated, indicating that the zwitterionic-phosphonic copolymers could serve as general antifouling coating materials for biomedical metals.
文章鏈接:
https://pubs.rsc.org/en/content/articlelanding/2019/TB/C9TB00856J#!divAbstract
版權(quán)與免責(zé)聲明:本網(wǎng)頁的內(nèi)容由收集互聯(lián)網(wǎng)上公開發(fā)布的信息整理獲得。目的在于傳遞信息及分享,并不意味著贊同其觀點(diǎn)或證實(shí)其真實(shí)性,也不構(gòu)成其他建議。僅提供交流平臺,不為其版權(quán)負(fù)責(zé)。如涉及侵權(quán),請聯(lián)系我們及時修改或刪除。郵箱:sales@allpeptide.com