Label-Free Raman Observation of TET1 Protein-Mediated Epigenetic Alterations in DNA
Luo, XJ (Luo, Xiaojun)[ 1 ] ; Jiang, LJ (Jiang, Lijuan)[ 1 ] ; Kang, TL (Kang, Tuli)[ 1 ] ; Xing, YF (Xing, Yingfang)[ 1 ] ; Zheng, EJ (Zheng, Erjin)[ 2 ] ; Wu, P (Wu, Ping)[ 1 ]*(吳萍) ; Cai, CX (Cai, Chenxin)[ 1 ]*(蔡稱心) ; Yu, QM (Yu, Qiuming)[ 2 ]*
[ 1 ] Nanjing Normal Univ, Jiangsu Collaborat Innovat Ctr Biomed Funct Mat, Coll Chem & Mat Sci, Jiangsu Key Lab New Power Batteries, Nanjing 210097, Jiangsu, Peoples R China
[ 2 ] Univ Washington, Dept Chem Engn, Seattle, WA 98195 USA
ANALYTICAL CHEMISTRY,201906,91(11), 7304-7312
Epigenetic modifications of DNA are known to modulate gene activity and expression and are believed to result in genetic diseases, such as cancer. Four modified cytosines were discovered in mammalian genomes: 5-methycytoine (5mC), 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-carboxycytosine (5caC). They are regarded as DNA epigenetic markers and play key roles in the regulation of the dynamic balance between DNA methylation and demethylation. Although detection approaches toward 5mC are ubiquitous, few assays have reported the simultaneous determination of all four modified cytosines as well as monitoring of their dynamic alterations. Here, we developed a label-free surface enhanced Raman spectroscopy (SERS)-based method for directly sensing the four DNA modifications by using a plasmonic gold nanohole array (PGNA) with well-controlled hot spots and an open surface as the substrate. This method is based on identifying SERS spectral features resulting from DNA base modifications. Our study shows that 5mC, 5hmC, 5fC, and 5caC exhibit distinct Raman spectroscopic signatures at 785, 660, 1450, and 1680 cm(-1), respectively. Moreover, the developed method can be used for tracking of the dynamic alterations among these four modified cytosines in DNA mediated by the ten-eleven translocation (TET) protein. The dynamic stepwise conversion from 5mC into 5hmC, 5fC, and 5caC is further demonstrated to be a typical three-step consecutive reaction with rate constants of 0.6, 0.25, and 0.15 min(-1), respectively, which has not been achieved before via a SERS-based method.
文章鏈接:
https://pubs.acs.org/doi/10.1021/acs.analchem.9b01004
版權(quán)與免責(zé)聲明:本網(wǎng)頁的內(nèi)容由收集互聯(lián)網(wǎng)上公開發(fā)布的信息整理獲得。目的在于傳遞信息及分享,并不意味著贊同其觀點或證實其真實性,也不構(gòu)成其他建議。僅提供交流平臺,不為其版權(quán)負(fù)責(zé)。如涉及侵權(quán),請聯(lián)系我們及時修改或刪除。郵箱:sales@allpeptide.com