Adenine Components in Biomimetic Metal-Organic Frameworks for Efficient CO2 Photoconversion
Li, N (Li, Ning)[ 1,2 ] ; Liu, J (Liu, Jiang)[ 1 ] ; Liu, JJ (Liu, Jing-Jing)[ 1 ] ; Dong, LZ (Dong, Long-Zhang)[ 1 ] ; Xin, ZF (Xin, Zhi-Feng)[ 1 ] ; Teng, YL (Teng, Yun-Lei)[ 2 ] ; Lan, YQ (Lan, Ya-Qian)[ 1 ]*(蘭亞乾)
[ 1 ] Nanjing Normal Univ, Jiangsu Collaborat Innovat Ctr Biomed Funct Mat, Jiangsu Key Lab New Power Batteries, Sch Chem & Mat Sci, 1 Wenyuan Rd, Nanjing 210023, Jiangsu, Peoples R China
[ 2 ] Yangzhou Univ, Sch Chem & Chem Engn, Yangzhou 225002, Jiangsu, Peoples R China
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION,201904,58(16),5226-5231
Visible-light driven photoconversion of CO2 into energy carriers is highly important to the natural carbon balance and sustainable development. Demonstrated here is the adenine-dependent CO2 photoreduction performance in green biomimetic metal-organic frameworks. Photocatalytic results indicate that AD-MOF-2 exhibited a very high HCOOH production rate of 443.2 mu mol g(-1) h(-1) in pure aqueous solution, and is more than two times higher than that of AD-MOF-1 (179.0 mu mol g(-1) h(-1)) in acetonitrile solution. Significantly, experimental and theoretical evidence reveal that the CO2 photoreduction reaction mainly takes place at the aromatic nitrogen atom of adenine molecules through a unique o-amino-assisted activation rather than at the metal center. This work not only serves as an important case study for the development of green biomimetic photocatalysts used for artificial photosynthesis, but also proposes a new catalytic strategy for efficient CO2 photoconversion.
文章鏈接:
https://onlinelibrary.wiley.com/doi/full/10.1002/anie.201814729
版權(quán)與免責(zé)聲明:本網(wǎng)頁的內(nèi)容由收集互聯(lián)網(wǎng)上公開發(fā)布的信息整理獲得。目的在于傳遞信息及分享,并不意味著贊同其觀點或證實其真實性,也不構(gòu)成其他建議。僅提供交流平臺,不為其版權(quán)負(fù)責(zé)。如涉及侵權(quán),請聯(lián)系我們及時修改或刪除。郵箱:sales@allpeptide.com