Double-Network Gel-Enabled Uniform Incorporation of Metallic Matrices with Silicon Anodes Realizing Enhanced Lithium Storage
Li, F (Li, Feng)[ 1 ] ; Wang, ZZ (Wang, Zhuangzhuang)[ 1 ] ; Liu, WQ (Liu, Weiqi)[ 1 ] ; Yan, T (Yan, Tao)[ 2 ] ; Zhai, CX (Zhai, Chuanxin)[ 2 ] ; Wu, P (Wu, Ping)[ 1 ]*(吳平); Zhou, YM (Zhou, Yiming)[ 1 ]*(周益明)
[ 1 ] Nanjing Normal Univ, Sch Chem & Mat Sci, Jiangsu Collaborat Innovat Ctr Biomed Funct Mat, Jiangsu Key Lab New Power Batteries, Nanjing 210023, Jiangsu, Peoples R China
[ 2 ] Amprius Wuxi Co Ltd, Wuxi 214000, Peoples R China
ACS APPLIED ENERGY MATERIALS,201903,2(3),2268-2275
Silicon-metal (Si-M) binary materials manifest high tap densities and areal capacities and desirable Li-storage behavior benefiting from metallic matrices and thus have been regarded as promising anodic choices in next-generation Li-ion batteries. To fully realize the hybridization merits, the uniform incorporation of metallic components with silicon is a prerequisite, yet it remains a significant challenge via facile and economic routes. Herein we develop an all inorganic, double-network, gel-enabled methodology for the uniform incorporation of metallic matrices with silicon anodes. Taking Si-Ti binary materials as an example, the simultaneous gelation reaction for both SiO2 and TiO2 gel networks ensures the formation of integrative SiO2-TiO2 double-network gels, guaranteeing the uniform incorporation of metallic titanium with nanoporous silicon framework via a subsequent magnesiothermic coreduction process. Thanks to the unique structural and compositional features, the as-prepared Si-Ti binary framework exhibits a long cycle life (1161 mA h g(-1) after 100 cycles at 0.5 A CI and a high rate capability (1405 and 1190 mA h g(-1) at 1 and 2 A g(-1), respectively).
文章鏈接:
https://pubs.acs.org.ccindex.cn/doi/10.1021/acsaem.9b00069
版權(quán)與免責(zé)聲明:本網(wǎng)頁的內(nèi)容由收集互聯(lián)網(wǎng)上公開發(fā)布的信息整理獲得。目的在于傳遞信息及分享,并不意味著贊同其觀點或證實其真實性,也不構(gòu)成其他建議。僅提供交流平臺,不為其版權(quán)負(fù)責(zé)。如涉及侵權(quán),請聯(lián)系我們及時修改或刪除。郵箱:sales@allpeptide.com