Reversible Transformation between CsPbBr3 Perovskite Nanowires and Nanorods with Polarized Optoelectronic Properties?
Wang,YK(Wang,Yongkai) [ 1 ];Liu,XY(Liu,Xiaoyu) [ 1 ];He,QY(He,Qiqian) [ 1 ];Chen,GY(Chen,Gaoyu) [ 1 ];Xu,DD(Xu,Dongdong) [ 1 ];Chen,XD(Chen,Xudong) [ 1 ];Zhao,WB(Zhao,Wenbo) [ 1 ];Bao,JC(Bao,Jianchun) [ 1 ];Xu,XX(Xu,Xiangxing)[ 1 ]*(徐翔星),Liu,JL(Liu,Junli) [ 2 ];Wang,X(Wang,Xun) [ 2 ]*
[ 1 ] Nanjing Normal Univ, Sch Chem & Mat Sci, Jiangsu Key Lab Biofunct Mat, Nanjing 210046, Jiangsu, Peoples R China
[ 2 ] Tsinghua Univ, Dept Chem, Key Lab Organ Optoelect & Mol Engn, Beijing 100084, Peoples R China
CsPbX3 (X = Cl, Br, I) perovskite nanowires and nanorods are important 1D and quasi 1D semiconductor nanomaterials. They have shown significant prospect in optic and optoelectronic applications, especially for their adaptability to flexible devices, good carrier transport performance, polarized absorption, and emission properties. Due to the high dependence of the property to the morphology, it is crucial to develop synthesis methods with continuous diameter and length tunability of the 1D/quasi 1D perovskites. In this report, a feasibly room temperature synthesis method was developed for ultrathin CsPbX 3 (X = Cl, Br, I) perovskite nanowires. By aging the CsPbBr 3 nanowires (≈2*500 nm) under ambient condition with proper concentra-’tion and time, the nanowires are transformed to nanorods with controllable diameter and length. Reversibly, the nanorods can be transformed back to nanowires. Equilibrium mechanism is adopted to understand the morphology evolution, and hopefully could be generally applied to many other nano materials.The polarized optoelectronic properties of the nanowires and nanorods are interpreted by a model based on the two-channel anisotropies measurement. Polarized light detectors constructed by oriented assembled nanowires are fabricated to demonstrate their application potentials.
文章鏈接:
https://onlinelibrary.wiley.com/doi/full/10.1002/adfm.202011251
版權(quán)與免責(zé)聲明:本網(wǎng)頁的內(nèi)容由收集互聯(lián)網(wǎng)上公開發(fā)布的信息整理獲得。目的在于傳遞信息及分享,并不意味著贊同其觀點(diǎn)或證實(shí)其真實(shí)性,也不構(gòu)成其他建議。僅提供交流平臺(tái),不為其版權(quán)負(fù)責(zé)。如涉及侵權(quán),請聯(lián)系我們及時(shí)修改或刪除。郵箱:sales@allpeptide.com