A "Signal On" Photoelectrochemical Biosensor Based on Bismuth@N,O-Codoped-Carbon Core-Shell Nanohybrids for Ultrasensitive Detection of Telomerase in HeLa Cells
Liu, SS (Liu, Shanshan)[ 1,2 ] ; Zhao, SL (Zhao, Shulin)[ 1,2 ] ; Tu, WW (Tu, Wenwen)[ 1,2 ] ; Wang, XY (Wang, Xiaoying)[ 1,2 ] ; Wang, X (Wang, Xiao)[ 1,2 ] ; Bao, JC (Bao, Jianchun)[ 1,2 ] ; Wang, Y (Wang, Yu)[ 1,2 ] ; Han, M (Han, Min)[ 1,2 ]*(韓敏); Dai, ZH (Dai, Zhihui)[ 1,2 ]*(戴志暉)
[ 1 ] Nanjing Normal Univ, Jiangsu Collaborat Innovat Ctr Biomed Funct Mat, Sch Chem & Mat Sci, Nanjing 210023, Jiangsu, Peoples R China
[ 2 ] Nanjing Normal Univ, Jiangsu Key Lab Biofunct Mat, Sch Chem & Mat Sci, Nanjing 210023, Jiangsu, Peoples R China
CHEMISTRY-A EUROPEAN JOURNAL,201803,24(15), 3677-3682
Core-shell nanohybrids (NHs) with good semiconducting properties are vital to promote optoelectronic, photocatalytic, biosensing and bioelectronics technologies. Although great process has been achieved, synthesis of NHs composed of semiconductor core and heteroatom-doped nanocarbon shell remains a challenge, and their applications in photoelectronchemical (PEC) biosensors have not been explored. Herein, the synthesis and properties of a Bi nanocrystal and N,O-codoped carbon (NOC) core-shell NHs (Bi@NOC) is described, which exhibits the typical semiconducting feature with the bandgap of 1.14 eV. Also, such NHs show good biocompatibility and their surfaces bear the carboxylic groups that facilitate further assembly of an amino-modified primer DNA. By taking advantage of the excellent PEC activity of Bi@NOC NHs and the signal amplification effect of thioflavine-T, a novel "signal on" PEC aptasensor for the detection of telomerase activity is constructed. The fabricated aptasensor can detect telomerase activity from 5.0 x 10(2) to 1.0 x 10(6) HeLa cells with a low detection limit of 60 cells. Also, the aptasensor shows a wide linear response ranges, high sensitivity and good reproducibility. This work not only enriches current core-shell NHs family but also offers a novel PEC biosensing platform for detecting telomerase activity that is helpful for early clinical diagnosis of cancer.
文章鏈接:
https://onlinelibrary.wiley.com/doi/abs/10.1002/chem.201704251
版權(quán)與免責(zé)聲明:本網(wǎng)頁(yè)的內(nèi)容由收集互聯(lián)網(wǎng)上公開(kāi)發(fā)布的信息整理獲得。目的在于傳遞信息及分享,并不意味著贊同其觀點(diǎn)或證實(shí)其真實(shí)性,也不構(gòu)成其他建議。僅提供交流平臺(tái),不為其版權(quán)負(fù)責(zé)。如涉及侵權(quán),請(qǐng)聯(lián)系我們及時(shí)修改或刪除。郵箱:sales@allpeptide.com