2013.03.25,我院胡兵教授和孫寶林教授研究組合作在International Journal of Medical Microbiology發(fā)表題為:
"Methylthioadenosine/S-adenosylhomocysteine nucleosidase (Pfs) of Staphylococcus aureus is essential for the virulence independent of LuxS/AI-2 system"的文章
Author: Yan Bao, Yajuan Li, Qiu Jiang, Liping Zhao, Ting Xue, Bing Hu* and Baolin Sun*
Abstract
Staphylococcus aureus is a major cause of infectious morbidity and mortality in both community and hospital settings. S. aureus continues to cause diverse invasive, life-threatening infections, such as pneumonia, endocarditis, and septicemia. Methylthioadenosine/S-adenosylhomocysteine nucleosidase (Pfs) is predicted to be an important enzyme involved in methylation reactions, polyamine synthesis, vitamin synthesis, and quorum sensing pathways. For the first time, we demonstrate that Pfs is essential for the virulence of S. aureus. The pfs mutant strain, as compared to the isogenic wild type, displayed a decreased production of extracellular proteases, which was correlated with a dramatic decrease in the expression of the sspABC operon and a moderate decrease of aur expression. The mouse model of sepsis and subcutaneous abscesses indicated that the pfs mutant strain displayed highly impaired virulence compared to the isogenic wild type. The decreased virulence of the pfs mutant strain is correspondence with its decreased proliferation in vivo, indicated with a real-time analysis in the transparent system of zebrafish embryos. These phenotypes of the pfs mutant strain are LuxS/AI-2 independent despite the essential role pfs plays in AI-2 production. Our data suggested that Pfs is a potential novel target for anti-infection therapy.
版權(quán)與免責(zé)聲明:本網(wǎng)頁的內(nèi)容由收集互聯(lián)網(wǎng)上公開發(fā)布的信息整理獲得。目的在于傳遞信息及分享,并不意味著贊同其觀點(diǎn)或證實(shí)其真實(shí)性,也不構(gòu)成其他建議。僅提供交流平臺,不為其版權(quán)負(fù)責(zé)。如涉及侵權(quán),請聯(lián)系我們及時(shí)修改或刪除。郵箱:sales@allpeptide.com