400-998-5282
專注多肽 服務(wù)科研
編號: | 434408 |
中文名稱: | Caspase 2 Substrate, chromogenic |
英文名: | Caspase 2 Substrate, chromogenic |
單字母: | Ac-VDQQD-pNA |
三字母: | Ac N端乙?;舛?/p> -Val纈氨酸 -Asp天冬氨酸 -Gln谷氨酰胺 -Gln谷氨酰胺 -Asp天冬氨酸 -pNA對硝基苯胺 |
氨基酸個數(shù): | 5 |
分子式: | C31H43O14N9 |
平均分子量: | 765.73 |
精確分子量: | 765.29 |
等電點(PI): | - |
pH=7.0時的凈電荷數(shù): | -2 |
平均親水性: | 0.98 |
疏水性值: | -1.96 |
消光系數(shù): | - |
標簽: | pNA修飾肽 酶底物肽(Substrate Peptide) 半胱氨酸蛋白酶(Caspase)肽 |
Caspase酶對應(yīng)的底物,Caspases(半胱氨酸天冬氨酸蛋白酶,半胱氨酸依賴性天冬氨酸定向蛋白酶)是一類蛋白酶家族,其功能與凋亡(程序性細胞死亡),壞死和發(fā)燒(炎癥)的過程密切相關(guān)。
什么是胱天蛋白酶?
胱天蛋白酶(Caspases)是含半胱氨酸的天冬氨酸蛋白水解酶,它們是為細胞凋亡的主要介質(zhì)。多種受體,例如TNF-α 受體,F(xiàn)asL受體,TLR和死亡受體,以及Bcl-2和凋亡抑制劑(IAP)蛋白家族參與并調(diào)節(jié)該caspase依賴性凋亡途徑。一旦Caspase受到上游信號(外部或內(nèi)在)刺激被激活,即會參與執(zhí)行下游蛋白底物的水解作用,并觸發(fā)一系列事件,導(dǎo)致細胞分解,死亡,吞噬作用和細胞碎片的清除。
人Caspases酶
人的Caspases家族基于序列相似性和生物學(xué)功能等共性主要可分為三大類:第一類由具有長胱天蛋白酶募集結(jié)構(gòu)域的“炎癥”胱天蛋白酶組成,他們對P4位上的較大的芳香族或疏水性殘基具有親和力。第二類由具有短的前體結(jié)構(gòu)域的“細胞凋亡效應(yīng)”胱天蛋白酶組成,而第三類由具有長的前提結(jié)構(gòu)域的Pap位置具有亮氨酸或纈氨酸底物親和力的“凋亡引發(fā)劑”胱天蛋白酶組成(表1)。
表1. 人胱天蛋白酶的功能分類:
細胞死亡途徑 | 半胱天冬酶類型 | 酵素 | 物種 |
細胞凋亡 | 啟動器 | Caspases 2 | 人與鼠 |
細胞凋亡 | 啟動器 | Caspases 8 | 人與鼠 |
細胞凋亡 | 啟動器 | Caspases 9 | 人與鼠 |
細胞凋亡 | 啟動器 | Caspases 10 | 人的 |
細胞凋亡 | 效應(yīng)器 | Caspases 3 | 人與鼠 |
細胞凋亡 | 效應(yīng)器 | Caspases 6 | 人與鼠 |
細胞凋亡 | 效應(yīng)器 | Caspases 6 | 人與鼠 |
細胞焦亡 | 炎性的 | Caspases 1 | 人與鼠 |
細胞焦亡 | 炎性的 | Caspases 4 | 人的 |
細胞焦亡 | 炎性的 | Caspases 5 | 人的 |
啟動器Caspase和效應(yīng)器Caspase酶
根據(jù)其在凋亡胱天蛋白酶途徑中的作用,胱天蛋白酶可分為兩類:啟動器和效應(yīng)器Caspase酶。啟動器和效應(yīng)器Caspas酶都具有由小亞基和大亞基組成的催化位點,Caspase酶的識別位
凋亡啟動器Caspase酶,例如caspase-2,-8,-9和-10可以啟動caspase激活級聯(lián)反應(yīng)。Caspase-8對于形成死亡誘導(dǎo)信號復(fù)合物(DISC)是必不可少的,并且在激活后,Caspase-8激活下游效應(yīng)子Caspase(例如Caspase 3)并介導(dǎo)線粒體中細胞色素c的釋放。Caspase-8已被證明對IETD肽序列具有相對較高的底物選擇性。凋亡效應(yīng)胱天蛋白酶例如Caspase-3,-6和-7雖然不負責啟動級聯(lián)途徑,但是當被激活時,它們在級聯(lián)的中間和后續(xù)步驟中起著不可或缺的作用。Caspase-3(CPP32 / apopain)是關(guān)鍵效應(yīng)器,因為它放大了來自啟動器Caspase的信號,使用對Caspase-3有選擇性的DEVD肽序列對活化的Caspase-3進行檢測,可以檢測Caspase-3的活性。
Caspase酶底物和抑制劑
Caspase底物和抑制劑由兩個關(guān)鍵成分組成:Caspase識別序列和信號產(chǎn)生或蛋白酶抑制基序。不同Caspase識別序列不同,一般由三個或四個氨基酸組成(表2)。Caspase酶識別序列的N端通常有乙?;ˋc)或碳苯甲氧基(Z)基團修飾,以增強膜的通透性。對應(yīng)的Caspase識別特定的肽序列為其酶促反應(yīng)切割位點,釋放產(chǎn)生信號或抑制信號的基序。Caspase的顯色和熒光底物均以相似的方式起作用,其中底物的信號或顏色強度與蛋白水解活性成正比。
表2. Caspase的底物及其序列
多肽 | 氨基酸序列 | 對應(yīng)的Caspase的種類 |
IETD | Ile-Glu-Thr-Asp | Caspase 8,顆粒酶B |
DEVD | Asp-Glu-Val-Asp | Caspase 3、6、7、8或10 |
LEHD | Leu-Glu-His-Asp | Caspase 9 |
VAD | Val-Ala-Asp | Caspase 1、2、3、6、8、9或10 |
Caspase酶的顯色底物
Caspase的顯色底物是有Caspase識別序列及生色基團組成,常見的生色團有pNA(對硝基苯胺或4-硝基苯胺),可使用酶標儀或分光光度計在405 nm處進行光密度檢測。
表3. Caspase的顯色底物
底物 | Caspase | 吸收(nm) | 顏色 |
Ac-DEVD-pNA * CAS 189950-66-1 * | 半胱天冬酶3 | 405 nm | 黃色 |
Z-DEVD-pNA | 半胱天冬酶3 | 405 nm | 黃色 |
Z-IETD-pNA * CAS 219138-21-3 * | 半胱天冬酶8,顆粒酶B | 405 nm | 黃色 |
Caspase的熒光底物
Caspase的熒光底物的結(jié)構(gòu)包含與半胱天冬酶識別相關(guān)的熒光團,例如7-氨基-4-甲基香豆素(AMC),7-氨基-4-三氟甲基香豆素(AFC), Rhodamine 110(R110)或ProRed™620。R110的Caspase底物比基于香豆素的Caspase底物(例如AMC和AFC)更敏感,但由于兩步裂解過程,其動態(tài)范圍更窄。 建議將R110標記的Caspase底物用于終點法測定,而將AMC和AFC標記的 Caspase底物用于動力學(xué)測定。
圖.從左到右,分別是AMC(7-氨基-4-甲基香豆素),AFC(7-氨基-4-三氟甲基香豆素),Rhodamine 110(R110)和ProRed™620的激發(fā)和發(fā)射光譜。
表4.熒光半胱天冬酶底物。
底物名稱 | 對應(yīng)的Caspase | Ex(nm) | Em(nm) | ε¹ | Φ² |
Ac-DEVD-AFC * CAS 201608-14-2 * | 半胱天冬酶3、7 | 376 | 482 | 17000 | 0.53 |
Ac-DEVD-AMC * CAS 169332-61-0 * | 半胱天冬酶3、7 | 341 | 441 | 19000 | N / D |
Z-DEVD-AFC | 半胱天冬酶3、7 | 376 | 482 | 17000 | 0.53 |
Z-DEVD-AMC * CAS 1135416-11-3 * | 半胱天冬酶3、7 | 341 | 441 | 19000 | N / D |
Z-DEVD-ProRed™620 | 半胱天冬酶3、7 | 532 | 619 | N / D | N / D |
(Z-DEVD)2 -R110 * CAS 223538-61-2 * | 半胱天冬酶3、7 | 500 | 522 | 80000 | N / D |
Z-DEVD-ProRed™620 | 半胱天冬酶3、7 | 532 | 619 | N / D | N / D |
Ac-IETD-AFC * CAS 211990-57-7 * | 半胱天冬酶8,顆粒酶B | 376 | 482 | 17000 | 0.53 |
Z-IETD-AFC * CAS 219138-02-0 * | 半胱天冬酶8,顆粒酶B | 376 | 482 | 17000 | 0.53 |
注意:
1.ε=在其最大吸收波長處的摩爾消光系數(shù)(單位= cm -1M -1)。
2.Φ=水性緩沖液(pH 7.2)中的熒光量子產(chǎn)率。
Caspase抑制劑
Caspase抑制劑能與Caspase的活性位點結(jié)合并形成可逆或不可逆的連接,通常,Caspase抑制劑的結(jié)構(gòu)由Caspase識別序列,諸如醛(-CHO)或氟甲基酮(-FMK)的官能團組成。具有醛官能團的胱天蛋白酶抑制劑是可逆的,而具有FMK的抑制劑是不可逆的。半胱天冬酶底物和抑制劑都具有較小的細胞毒性作用,因此,它們是研究半胱天冬酶活性的有用工具。
表5. 可逆和不可逆的Caspase酶抑制劑
抑制劑 | Caspase的種類 | 是否可逆 | Ex(nm) | Em(nm) |
Ac-DEVD-CHO * CAS 169332-60-9 * | 半胱天冬酶3、7 | 可逆的 | -- | -- |
Ac-IETD-CHO * CAS 191338-86-0 * | 半胱天冬酶8 | 可逆的 | -- | -- |
mFluor™450-VAD-FMK | 半胱天冬酶1,2,3,6,8,9,10 | 不可逆的 | 406 | 445 |
mFluor™510-VAD-FMK | 半胱天冬酶1,2,3,6,8,9,10 | 不可逆的 | 412 | 505 |
FITC-C6-DEVD-FMK | 半胱天冬酶3、7 | 不可逆的 | 491 | 516 |
FITC-C6-DEVD-FMK | 半胱天冬酶3、7 | 不可逆的 | 491 | 516 |
FITC-C6-LEHD-FMK | 半胱天冬酶9 | 不可逆的 | 491 | 516 |
FITC-C6-LEHD-FMK | 半胱天冬酶9 | 不可逆的 | 491 | 516 |
FAM-VAD-FMK | 半胱天冬酶1,2,3,6,8,9,10 | 不可逆的 | 493 | 517 |
SRB-VAD-FMK [磺胺丁胺B-VAD-FMK] | 半胱天冬酶1,2,3,6,8,9,10 | 不可逆的 | 559 | 577 |
Definition
Caspases are a family of aspartate specific cysteine proteases that play an important role in apoptosis, necrosis and inflammation1.
Discovery
Caspases were first identified in the nematode C. elegans. It was found that the gene ced-3 was required for cell death during C.elegans development2. In 1993, the protein encoded by the ced-3 gene was identified as a cysteine protease and it was found that it had similar properties to the mammalian interleukin-1-beta converting enzyme (ICE) (now known as caspase 1) which at the time was the only known caspase3. Other mammalian caspases were subsequently identified.
Classification
There are three types of apoptotic caspases: initiator, effector and inflammatory caspases. Initiator caspases (e.g. CASP2, CASP8, CASP9 and CASP10) cleave inactive pro-forms of effector caspases, thereby activating them4. Effector caspases (e.g. CASP3, CASP6 and CASP7) in turn cleave other protein substrates within the cell, to trigger the apoptotic process4. Inflammatory caspases are involved in immune response (e.g. CASP1, CASP4, CASP5, CASP11, CASP12 and CASP13). Caspase inhibitors regulate the initiation of this cascade4.
Structural Characteristics
Caspases are synthesized as inactive zymogens or procaspases. Activation of caspases occurs by cleavage of the prodomain in the procaspases5. The caspase catalytic domain is composed of a twisted, mostly parallel ß-sheet sandwiched between two layers of a-helices. Also they contain an active cysteine residue in their catalytic domain5. In addition to the catalytic domain, both inflammatory and initiator caspases carry at their N-termini, one or two copies of CARD or DED modules, which are critical for their activation in vivo. These modules are mainly composed of six antiparallel a-helices, with helices a1–a5 building an a-helical Greek key5. The general structure of a caspase inhibitor is [tetrapeptide]-CO-CH2-X, that binds to the Cys285 in the active site of caspases5.
Mode of action
Caspases cleave the substrate after an Asp residue6. There are several hundred substrates for caspases. Initially activation of initiator caspases occurs as a result of an extrinsic or intrinsic death signal6. Activated initiator caspases cleave effector caspases that in turn cleave the substrate at an Asp residue6. For example, caspase-8 cleaves the pro-apoptotic protein Bid that gets activated and translocates into the mitochondria where it activates other pro-apoptotic proteins, Bax and Bak thus amplifying the death signal6.
Functions
Caspases such as caspase-1 are involved in the activation of pro-inflammatory cytokines such as Interleukin 1 and interleukin 185,6. Caspases play an important role in apoptosis. One of the hallmark feature of apoptotic cell death is genomic disassembly and proteolysis5,6. By cleaving their substartes, caspases inactivate cell cycle progression and DNA repair processes. They also activate several pro-apoptotic proteins5,6. In some cases Caspases’ role in aberrant processing events has shown their involvement in neurodegenerative disorders such as Huntington disease and Alzheimer’s disease6. Some of the final targets of caspases include: nuclear lamins, ICAD/DFF45 (inhibitor of caspase activated DNase or DNA fragmentation factor 45), PARP (poly-ADP ribose polymerase) and PAK2 (P 21-activated kinase 2)6. Caspases are also implicated in embryonic development and T and B cell differentiation7.
References
1. Book: Cells by Benjamin L, Lynne C, Vishwanath RL, George P (207), 536-540.
2. Ellis HM, Horvitz HR (1986). Genetic control of programmed cell death in the nematode C. elegans. Cell, 44(6), 817-29.
3. Yuan J, Shaham S, Ledoux S, Ellis HM and Horvitz HR (1993). The C. elegans cell death gene ced-3 encodes a protein similar to mammalian interleukin-1 beta-converting enzyme. Cell 75: 641–652.
4. Salvesen GS, Riedl SJ (2008). Caspase mechanisms. Adv Exp Med Biol., 615, 13-23.
5. Prior PF and Salvesen GS (2004). The protein structures that shape caspase activity, specificity,activation and inhibition. Biochem. J., 384, 201–232.
6. Nicholson DW (1999). Caspase structure, proteolytic substrates, and function during apoptotic cell death. Cell Death and Differentiation, 6, 1028 ± 1042.
7. Maelfait J, Beyaert R (2008). Non-apoptotic functions of caspase-8. Biochem Pharmacol., 76(11), 1365-73.
Caspase酶對應(yīng)的底物,Caspases(半胱氨酸天冬氨酸蛋白酶,半胱氨酸依賴性天冬氨酸定向蛋白酶)是一類蛋白酶家族,其功能與凋亡(程序性細胞死亡),壞死和發(fā)燒(炎癥)的過程密切相關(guān)。
什么是胱天蛋白酶?
胱天蛋白酶(Caspases)是含半胱氨酸的天冬氨酸蛋白水解酶,它們是為細胞凋亡的主要介質(zhì)。多種受體,例如TNF-α 受體,F(xiàn)asL受體,TLR和死亡受體,以及Bcl-2和凋亡抑制劑(IAP)蛋白家族參與并調(diào)節(jié)該caspase依賴性凋亡途徑。一旦Caspase受到上游信號(外部或內(nèi)在)刺激被激活,即會參與執(zhí)行下游蛋白底物的水解作用,并觸發(fā)一系列事件,導(dǎo)致細胞分解,死亡,吞噬作用和細胞碎片的清除。
人Caspases酶
人的Caspases家族基于序列相似性和生物學(xué)功能等共性主要可分為三大類:第一類由具有長胱天蛋白酶募集結(jié)構(gòu)域的“炎癥”胱天蛋白酶組成,他們對P4位上的較大的芳香族或疏水性殘基具有親和力。第二類由具有短的前體結(jié)構(gòu)域的“細胞凋亡效應(yīng)”胱天蛋白酶組成,而第三類由具有長的前提結(jié)構(gòu)域的Pap位置具有亮氨酸或纈氨酸底物親和力的“凋亡引發(fā)劑”胱天蛋白酶組成(表1)。
表1. 人胱天蛋白酶的功能分類:
細胞死亡途徑 | 半胱天冬酶類型 | 酵素 | 物種 |
細胞凋亡 | 啟動器 | Caspases 2 | 人與鼠 |
細胞凋亡 | 啟動器 | Caspases 8 | 人與鼠 |
細胞凋亡 | 啟動器 | Caspases 9 | 人與鼠 |
細胞凋亡 | 啟動器 | Caspases 10 | 人的 |
細胞凋亡 | 效應(yīng)器 | Caspases 3 | 人與鼠 |
細胞凋亡 | 效應(yīng)器 | Caspases 6 | 人與鼠 |
細胞凋亡 | 效應(yīng)器 | Caspases 6 | 人與鼠 |
細胞焦亡 | 炎性的 | Caspases 1 | 人與鼠 |
細胞焦亡 | 炎性的 | Caspases 4 | 人的 |
細胞焦亡 | 炎性的 | Caspases 5 | 人的 |
啟動器Caspase和效應(yīng)器Caspase酶
根據(jù)其在凋亡胱天蛋白酶途徑中的作用,胱天蛋白酶可分為兩類:啟動器和效應(yīng)器Caspase酶。啟動器和效應(yīng)器Caspas酶都具有由小亞基和大亞基組成的催化位點,Caspase酶的識別位
凋亡啟動器Caspase酶,例如caspase-2,-8,-9和-10可以啟動caspase激活級聯(lián)反應(yīng)。Caspase-8對于形成死亡誘導(dǎo)信號復(fù)合物(DISC)是必不可少的,并且在激活后,Caspase-8激活下游效應(yīng)子Caspase(例如Caspase 3)并介導(dǎo)線粒體中細胞色素c的釋放。Caspase-8已被證明對IETD肽序列具有相對較高的底物選擇性。凋亡效應(yīng)胱天蛋白酶例如Caspase-3,-6和-7雖然不負責啟動級聯(lián)途徑,但是當被激活時,它們在級聯(lián)的中間和后續(xù)步驟中起著不可或缺的作用。Caspase-3(CPP32 / apopain)是關(guān)鍵效應(yīng)器,因為它放大了來自啟動器Caspase的信號,使用對Caspase-3有選擇性的DEVD肽序列對活化的Caspase-3進行檢測,可以檢測Caspase-3的活性。
Caspase酶底物和抑制劑
Caspase底物和抑制劑由兩個關(guān)鍵成分組成:Caspase識別序列和信號產(chǎn)生或蛋白酶抑制基序。不同Caspase識別序列不同,一般由三個或四個氨基酸組成(表2)。Caspase酶識別序列的N端通常有乙酰基(Ac)或碳苯甲氧基(Z)基團修飾,以增強膜的通透性。對應(yīng)的Caspase識別特定的肽序列為其酶促反應(yīng)切割位點,釋放產(chǎn)生信號或抑制信號的基序。Caspase的顯色和熒光底物均以相似的方式起作用,其中底物的信號或顏色強度與蛋白水解活性成正比。
表2. Caspase的底物及其序列
多肽 | 氨基酸序列 | 對應(yīng)的Caspase的種類 |
IETD | Ile-Glu-Thr-Asp | Caspase 8,顆粒酶B |
DEVD | Asp-Glu-Val-Asp | Caspase 3、6、7、8或10 |
LEHD | Leu-Glu-His-Asp | Caspase 9 |
VAD | Val-Ala-Asp | Caspase 1、2、3、6、8、9或10 |
Caspase酶的顯色底物
Caspase的顯色底物是有Caspase識別序列及生色基團組成,常見的生色團有pNA(對硝基苯胺或4-硝基苯胺),可使用酶標儀或分光光度計在405 nm處進行光密度檢測。
表3. Caspase的顯色底物
底物 | Caspase | 吸收(nm) | 顏色 |
Ac-DEVD-pNA * CAS 189950-66-1 * | 半胱天冬酶3 | 405 nm | 黃色 |
Z-DEVD-pNA | 半胱天冬酶3 | 405 nm | 黃色 |
Z-IETD-pNA * CAS 219138-21-3 * | 半胱天冬酶8,顆粒酶B | 405 nm | 黃色 |
Caspase的熒光底物
Caspase的熒光底物的結(jié)構(gòu)包含與半胱天冬酶識別相關(guān)的熒光團,例如7-氨基-4-甲基香豆素(AMC),7-氨基-4-三氟甲基香豆素(AFC), Rhodamine 110(R110)或ProRed™620。R110的Caspase底物比基于香豆素的Caspase底物(例如AMC和AFC)更敏感,但由于兩步裂解過程,其動態(tài)范圍更窄。 建議將R110標記的Caspase底物用于終點法測定,而將AMC和AFC標記的 Caspase底物用于動力學(xué)測定。
圖.從左到右,分別是AMC(7-氨基-4-甲基香豆素),AFC(7-氨基-4-三氟甲基香豆素),Rhodamine 110(R110)和ProRed™620的激發(fā)和發(fā)射光譜。
表4.熒光半胱天冬酶底物。
底物名稱 | 對應(yīng)的Caspase | Ex(nm) | Em(nm) | ε¹ | Φ² |
Ac-DEVD-AFC * CAS 201608-14-2 * | 半胱天冬酶3、7 | 376 | 482 | 17000 | 0.53 |
Ac-DEVD-AMC * CAS 169332-61-0 * | 半胱天冬酶3、7 | 341 | 441 | 19000 | N / D |
Z-DEVD-AFC | 半胱天冬酶3、7 | 376 | 482 | 17000 | 0.53 |
Z-DEVD-AMC * CAS 1135416-11-3 * | 半胱天冬酶3、7 | 341 | 441 | 19000 | N / D |
Z-DEVD-ProRed™620 | 半胱天冬酶3、7 | 532 | 619 | N / D | N / D |
(Z-DEVD)2 -R110 * CAS 223538-61-2 * | 半胱天冬酶3、7 | 500 | 522 | 80000 | N / D |
Z-DEVD-ProRed™620 | 半胱天冬酶3、7 | 532 | 619 | N / D | N / D |
Ac-IETD-AFC * CAS 211990-57-7 * | 半胱天冬酶8,顆粒酶B | 376 | 482 | 17000 | 0.53 |
Z-IETD-AFC * CAS 219138-02-0 * | 半胱天冬酶8,顆粒酶B | 376 | 482 | 17000 | 0.53 |
注意:
1.ε=在其最大吸收波長處的摩爾消光系數(shù)(單位= cm -1M -1)。
2.Φ=水性緩沖液(pH 7.2)中的熒光量子產(chǎn)率。
Caspase抑制劑
Caspase抑制劑能與Caspase的活性位點結(jié)合并形成可逆或不可逆的連接,通常,Caspase抑制劑的結(jié)構(gòu)由Caspase識別序列,諸如醛(-CHO)或氟甲基酮(-FMK)的官能團組成。具有醛官能團的胱天蛋白酶抑制劑是可逆的,而具有FMK的抑制劑是不可逆的。半胱天冬酶底物和抑制劑都具有較小的細胞毒性作用,因此,它們是研究半胱天冬酶活性的有用工具。
表5. 可逆和不可逆的Caspase酶抑制劑
抑制劑 | Caspase的種類 | 是否可逆 | Ex(nm) | Em(nm) |
Ac-DEVD-CHO * CAS 169332-60-9 * | 半胱天冬酶3、7 | 可逆的 | -- | -- |
Ac-IETD-CHO * CAS 191338-86-0 * | 半胱天冬酶8 | 可逆的 | -- | -- |
mFluor™450-VAD-FMK | 半胱天冬酶1,2,3,6,8,9,10 | 不可逆的 | 406 | 445 |
mFluor™510-VAD-FMK | 半胱天冬酶1,2,3,6,8,9,10 | 不可逆的 | 412 | 505 |
FITC-C6-DEVD-FMK | 半胱天冬酶3、7 | 不可逆的 | 491 | 516 |
FITC-C6-DEVD-FMK | 半胱天冬酶3、7 | 不可逆的 | 491 | 516 |
FITC-C6-LEHD-FMK | 半胱天冬酶9 | 不可逆的 | 491 | 516 |
FITC-C6-LEHD-FMK | 半胱天冬酶9 | 不可逆的 | 491 | 516 |
FAM-VAD-FMK | 半胱天冬酶1,2,3,6,8,9,10 | 不可逆的 | 493 | 517 |
SRB-VAD-FMK [磺胺丁胺B-VAD-FMK] | 半胱天冬酶1,2,3,6,8,9,10 | 不可逆的 | 559 | 577 |